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Abstract 17 

In fisheries with limited capacity for monitoring, it is often easier to collect length 18 

measurements from fishery catch than quantify total catch. Conventional stock assessment tools 19 

that rely on length measurements without total catch do not directly account for variable fishing 20 

mortality and recruitment over time. However, this equilibrium assumption is likely violated in 21 

almost every fishery, degrading estimation performance. We developed an extension of length-22 

only approaches to account for time-varying recruitment and fishing mortality. This Length-23 

based Integrated Mixed Effects (LIME) method at a minimum requires a single year of length 24 

data and basic biological information, but can fit to multiple years of length data, catch, and an 25 

abundance index if available. We use simulation testing to demonstrate that LIME can estimate 26 

how much fishing has reduced spawning output in the most recent year across a variety of 27 

scenarios for recruitment and fishing mortality. LIME improves data-limited fisheries stock 28 

assessments by its flexibility to incorporate additional years or types of data if available, and 29 

obviates the need for equilibrium assumptions.  30 

  31 
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Introduction 32 

Many fisheries worldwide lack the quality and quantity of data used in classical stock 33 

assessments, but must deal with limited information to make management decisions (Quinn et al. 34 

2016). Stock assessments can provide a quantitative starting point for developing management 35 

strategies and monitoring the impacts of management. For example, the Magnuson-Stevens 36 

Fisheries Conservation and Management Act mandates fisheries managers in the United States to 37 

set catch limits based on the ‘best available science’, involving advice from stock assessment to 38 

inform those limits (Darcy and Matlock 1999; Methot et al. 2014). The Marine Stewardship 39 

Council (MSC) similarly requires fisheries seeking certification to go through a stock assessment 40 

process to determine their sustainability (Gulbrandsen 2009). In the case of small-scale fisheries 41 

in developing nations, it is possible to manage a fishery using only harvest control rules to meet 42 

management objectives, without formal stock assessment estimating status relative to reference 43 

points (Mahon 1997). However, beyond their use to evaluate management strategies for fishery 44 

resources (Carruthers et al. 2014), modeling tools can help with community engagement in the 45 

scientific process, such as conflict resolution (Butler et al. 2006) and integration of local 46 

knowledge to support cooperation between fishermen and scientists (Neis 1992; Azzurro et al. 47 

2011).  48 

Many stocks worldwide remain unassessed, e.g., the U.N. Food and Agriculture 49 

Organization global fishery statistics database includes 19,624 unique combinations of country 50 

and taxa (FAO 2016), while the RAM Legacy stock assessment database only includes 1,268 51 

stock assessments (Ricard et al. 2012). The regions of the world with the fewest stock 52 

assessments relative to the number of stocks perform worse across fishery management attributes 53 

(Melnychuk et al. 2017), indicating the presence of fishery monitoring and assessment may have 54 
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some relation with successful management. In the following, we define “data-limited” as any 55 

stock with uninformative data (no contrast to provide information on rates of change) or lacking 56 

data types typically used in statistical estimates of stock status (e.g. fishery-independent surveys, 57 

proportion-at-ages) (Costello et al. 2012; Dowling et al. 2016).  Data-limited stock assessment 58 

methods are in great demand in both developed and developing nations due to the ubiquity of 59 

data-limited fisheries, and the need for science-based management decisions (Wetzel and Punt 60 

2011; Chrysafi and Kuparinen 2016; Dowling et al. 2015).  61 

Length-based assessment methods are a vital component of the data-limited stock 62 

assessment toolbox because it is much easier to obtain reliable length measurements of a portion 63 

of the fishery catch than to measure total catch or record effort data for many small-scale or non-64 

target species (Harley et al. 2001; Nadon et al. 2015; Prince et al. 2015b; Kokkalis et al. 2015). 65 

Similarly, age information and a fishery-independent survey that are representative of total 66 

abundance are prohibitively expensive or impossible to collect for most fisheries in the world. 67 

Prominent length-based methods for estimating reference points in data-limited fisheries include 68 

length-based spawning potential ratio (LB-SPR; Hordyk et al. 2015) and mean-length mortality 69 

estimation methods (Nadon et al. 2015). LB-SPR uses length-composition data and assumptions 70 

about biological parameters to make a rapid assessment of stock status relative to unfished levels 71 

assuming equilibrium conditions (Hordyk et al. 2015; Prince et al. 2015b). While LB-SPR can 72 

use multiple years of length data, status determination is based on one year of data at a time (i.e. 73 

estimates of status over multiple years are based on that year’s length composition alone). Mean-74 

length mortality estimators (e.g., Gedamke and Hoenig 2006), first developed by Beverton and 75 

Holt (1957), assume fishing mortality directly influences mean length of the catch, and have 76 

been used for assessments in the U.S. South Atlantic, Pacific islands, and Caribbean (Ehrhardt 77 
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and Ault 1992; Ault et al. 2005, 2008; Gedamke and Hoenig 2006; Nadon et al. 2015). As 78 

measures of stock status, these length-based methods derive the spawning potential ratio (SPR) 79 

reference point, defined as the proportion of unfished reproductive potential at a given level of 80 

fishing pressure (Goodyear 1993).  81 

Length-based assessment methods estimating stock status assume that recruitment and 82 

fishing mortality arise from deterministic relationships or have not changed over a period 83 

significant for management and the life history of the species (termed “equilibrium 84 

assumptions”). Equilibrium assumptions are often violated (Gedamke and Hoenig 2006), as 85 

recruitment is quite variable for most species and fishing mortality changes with markets and 86 

other socioeconomic factors in the fishing community (Thorson et al. 2013, 2014a). Stochastic 87 

ocean conditions and productivity regime shifts may cause recruitment to vary erratically, 88 

gradually, or periodically at any given time (Vert-pre et al. 2013; Thorson et al. 2014b; 89 

Szuwalski et al. 2015). However, the violation of the equilibrium assumption may be difficult to 90 

detect. For example, the equilibrium assumption may appear valid when the mean length is 91 

constant over time (Gedamke and Hoenig 2006; Nadon et al. 2015). If recruitment is then 92 

constant over time, increasing fishing mortality will lead to decreasing mean length as the larger 93 

individuals are harvested and only smaller individuals remain in the population. However, 94 

constant fishing mortality and a recruitment pulse would also lead to a decrease in mean length, 95 

with more young individuals entering the population. Given both variable fishing mortality and 96 

recruitment processes occurring on the same population as well as errors when measuring mean 97 

length, a mean-length time series may appear constant when time-varying population processes 98 

are instead cancelling each other out.  99 
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As an alternative to the equilibrium assumptions, a mixed-effects model can be used to 100 

deal with important demographic changes by estimating random variation in recruitment, fishing 101 

mortality, or other biological processes, as well as the magnitude (variance) of random variation 102 

in each process (de Valpine and Hastings 2002; Buckland et al. 2004; Schnute and Haigh 2007; 103 

Thorson and Minto 2015). Mixed-effects models can directly account for variation arising from 104 

natural processes or measurement processes separately, and therefore improve performance in 105 

nonlinear fisheries models (de Valpine and Hastings 2002; Ono et al. 2012; Thorson et al. 106 

2015b). A main criticism of length-based methods with equilibrium assumptions is that with a 107 

single year of length-composition data and general understanding of biological parameters, it is 108 

impossible to determine whether a larger proportion of small fish in the catch is caused by strong 109 

cohort in recent years, or by the removal of larger fish from the system. Accounting for random 110 

variation in recruitment, fishing mortality and observation error arising from the process of 111 

sampling fish lengths from the population, helps to tease apart each of these processes and better 112 

identify the true state of the fish population.  113 

The aim of this study is to introduce a new length-based, integrated, mixed-effects 114 

(LIME) model and demonstrate its statistical performance when estimating reference points 115 

assuming only length composition and basic biological information are available. This method 116 

builds upon the catch-curve stock reduction analysis (CCSRA) model (Thorson and Cope 2014), 117 

which includes an estimate of mortality from the age composition and at least one year of total 118 

fishery catch to estimate MSY-based reference points without assuming information about final 119 

biomass relative to unfished biomass (as generally used in stock reduction analysis). As an 120 

extension, LIME uses samples of length in place of the more resource-intensive samples of age, 121 

and can estimate the SPR reference point if catch data are unavailable. To demonstrate the LIME 122 
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model, we used simulation testing to (i) demonstrate that LIME is unbiased across several life-123 

history types and patterns of fishing mortality and recruitment variability and able to include 124 

more years of length measurements and catch and/or abundance index data, (ii) examine the 125 

sensitivity of the model to sample size of length measurements and error in input parameters, and 126 

(iii) compare LIME against LB-SPR to assess performance under various violations of model 127 

assumptions, including the timing of sampling within the year and modeling monthly time steps. 128 

 129 

Methods 130 

LIME is an age-structured population dynamics model with the ability to (1) account for 131 

variable fishing mortality and recruitment when only length data are available, and (2) to treat 132 

multiple years and types of data in an integrated manner to improve estimates of fishing 133 

mortality changes over time. The minimum inputs for the LIME assessment method are data on 134 

the length composition of the catch from a single year as well as assumed life history 135 

information, including the length-at-age relationship, an assumed natural mortality rate, and 136 

length at 50% maturity. LIME estimates annual fishing mortality rates, lengths at 50% and 95% 137 

selectivity to the fishing gear, and the Dirichlet-multinomial parameter θ as fixed effects. The 138 

effective sample size of length data is linearly related to the input sample size with intercept 139 

(1+θ)
-1

 and slope θ(1+θ)
-1

 (Thorson et al. 2017). LIME can be differentiated from other age-140 

structured models (e.g. Stock Synthesis) in that annual recruitments are treated as random 141 

effects, where mean and standard deviation of a distribution for recruitment are additionally 142 

estimated as fixed effects. Another key difference is that LIME does not require catch data: if no 143 

information on the scale of population size is available, recruitment will be estimated relative to 144 

average levels for an unfished population. As measures of stock status, we derived the SPR 145 
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reference point to compare results with LB-SPR. We also derived the F30% and F40% reference 146 

points (the fishing mortality rates that would result in SPR of 30% and 40%, respectively; Clark 147 

2002). We derived MSY by finding the fishing mortality rate that results in the highest yield per 148 

recruit. When total catch data were available (thereby providing information on scale of the 149 

population size), LIME would estimate equilibrium recruitment, which would scale the MSY 150 

based on a per-recruit equation to a scale appropriate for the population size.  151 

We developed an operating model to simulate true populations and generate data under a 152 

variety of fishing, recruitment, and life history scenarios. We then used this operating model to 153 

explore the estimation performance of LIME for different scenarios regarding recruitment, 154 

fishing mortality, data-availability, and life history (Figure 1). We conducted all simulation 155 

modeling using the open-source statistical software R (R Core Team 2016), and all estimation in 156 

the R package Template Model Builder (TMB; Kristensen et al. 2015) as implemented in our R 157 

package LIME (https://github.com/merrillrudd/LIME, doi: 10.5281/zenodo.834404, version 158 

1.0.0). 159 

 160 

Operating model 161 

We tested LIME for three different life-history types chosen to reflect the types of taxa 162 

for which length-based assessments are commonly demanded (Figure 2). These life-history types 163 

were: (a) a short-lived fish, mimicking rabbitfish (Siganus sutor, L∞=36.2 cm, k=0.87, M=1.49, 164 

����=20.2 cm, maximum age =4, Hicks and McClanahan 2012), (b) a medium-lived fish, 165 

mimicking spotted rose snapper (Lutjanus guttatus, L∞=64.6 cm, k=0.21, M=0.43, ����=34.0 cm, 166 

maximum age=15, Bystrom 2015), and (c) a longer-lived fish, mimicking red grouper 167 

(Epinephelus morio, L∞=90.0 cm, k=0.13, M=0.18, ����=50.0 cm, maximum age=26, Heemstra 168 
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and Randall 1993) (Table 1). Each simulated population began with biomass at a fraction of 169 

unfished biomass, drawn from a uniform distribution between 0.05 and 0.95.  170 

For each life history scenario, we tested LIME performance under three scenarios of 171 

fishing mortality and recruitment variability (Figure 3). The first is the “equilibrium scenario”, 172 

which matches the non-variable fishing mortality and recruitment assumptions of LB-SPR. The 173 

equilibrium scenario involved fishing mortality and recruitment constant over a 20-year period, 174 

with a standard deviation for fishing mortality and recruitment set to a negligible 0.01. The 175 

second scenario, the “two-way base scenario”, involved a linear change from the fishing 176 

mortality that would result in the randomly chosen initial depletion to the rate associated with 177 

20% SPR (F20%) over the first seven years of the 20-year time series. This change could be 178 

positive or negative depending on the F associated with randomly selected value for initial 179 

depletion and F20%. Over the next seven years of the time series, F was constant at F20%, then the 180 

fishing rate decreased linearly down to half of F20% for the last six years of the time series. F20% 181 

was calculated deterministically based on the biological information and selectivity associated 182 

with each life-history type. Thus, this value would not vary between different scenarios of 183 

variability within a life-history type. The fishing mortality time series in the “two-way base 184 

scenario” varied between simulation iterations in a) the randomly chosen initial depletion and b) 185 

lognormally distributed deviations around this two-way trip (following the same equation for 186 

lognormal recruitment deviates in Table 3, eq. 1 except using the standard deviation for fishing 187 

mortality, ��, equal to 0.2). While we calculated F20% for the medium-lived and longer-lived life-188 

history types, we fixed F20% to 3.0 for the short-lived life-history type. Based on the assumption 189 

of instantaneous annual fishing mortality, F20% for the short-lived fish was calculated to be much 190 

greater than could be supported even by very high fishing capacity. Recruitment was variable 191 
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and autocorrelated over a 20-year period (Table 3, eq. 2). This scenario included a standard 192 

deviation of recruitment residuals �� equal to 0.737 and a first-order autoregressive coefficient 193 

equal to 0.426, the mean of the predictive distribution from a meta-analysis of recruitment 194 

variability in global fish orders (Thorson et al. 2014b). A third scenario, the “one-way base 195 

scenario”, involved the same recruitment variability and autocorrelation as the “two-way” 196 

scenario, but with fishing mortality changing linearly from the rate that would result in the 197 

randomly chosen initial depletion to F20% over the 20-year period. Thus, this change could be 198 

positive or negative depending on the F associated with the randomly chosen initial depletion 199 

relative to F20% for the life-history type. This combination of scenarios tests the ability to track 200 

how the population processes are changing over time with variability in the system.  201 

In the operating model, we assumed the natural mortality rate was constant, known, and 202 

independent of size or age. We modeled individual growth using a von Bertalanffy growth 203 

function (Table 2, eq. 1; Figure 2). We assumed maturity at length mj was based on a one-204 

parameter logistic function (Table 2, eq. 2; Figure 2). We converted maturity at length to 205 

maturity at age using a normal distribution with standard deviation a function of the coefficient 206 

of variation of the age-length curve (Table 2, eq. 3). Selectivity-at-length follows a two-207 

parameter logistic model (Table 2, eq. 4; Figure 2), with estimated parameter length at 50% 208 

selectivity and a second parameter δ representing the difference between length at 95% and 50% 209 

selectivity. We modeled weight at age as an allometric function of individual length at age 210 

(Table 2, eq. 5). We calculated annual total biomass as a function of the abundance and weight-211 

at-age (Table 2, eq. 6). Spawning biomass was a function of the total annual biomass and the 212 

proportion mature at age (Table 2, eq. 7). These processes contributed to an underlying age-213 

structured model (Table 2, eq. 8). Parameter definitions and input values are listed in Table 1. 214 
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 215 

Data generation 216 

We generated length data by simulating underlying age-structured dynamics and then 217 

sampling length composition from the vulnerable population instantaneously at the beginning of 218 

each year. First we calculated the probability of being in a length bin for individuals of each age 219 

(Table 3, eq. 3). We then calculated the probability of harvest in each length bin each year as the 220 

proportion of the abundance-at-age vulnerable to the fishing gear each year multiplied by the 221 

probability of being in a length bin given age (Table 3, eq. 4). We used a multinomial probability 222 

distribution to generate the length frequency of samples of the catch in each length bin over time 223 

(Table 3, eq. 5).  224 

We assumed a sample size n of 200 individuals were measured annually, and that this 225 

was the “true” sample size of the length data. We compared the base case of 200 length 226 

measurements annually to model performance under sample sizes of 1,000, 500, 100, 50, and 20. 227 

We used the large sample size of 1,000 to confirm the model is unbiased and precise across data 228 

availability scenarios under ideal circumstances, and then tested the alternate, lower sample sizes 229 

to assess performance under more realistic sample sizes.  230 

We tested seven different scenarios of data availability. Two scenarios included only 231 

length data, assuming one or ten years of length data were available (the “one length 232 

composition”, “ten length compositions” scenarios). Data from these two scenarios were used to 233 

demonstrate the value of additional years of length data for each life-history type. We also 234 

explored five scenarios of additional data availability to demonstrate the integrated nature of 235 

LIME. The data availability scenarios included (i) a “data-rich” scenario with 20 years of total 236 

catch, 20 years of an abundance index, and 20 years of length data, used as proof-of-concept that 237 
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LIME works when a high amount of informative data exists; (ii) “index plus 10” with 20 years of 238 

an abundance index and 10 years of length data; (iii) “index plus 1” with 20 years of an 239 

abundance index and 1 year of length data; (iv) “catch plus 10” with 20 years of total catch data 240 

and 10 years of length data; and (v) “catch plus 1” with 20 years of total catch data and 1 year of 241 

length data. We assume that catch and abundance indices are lognormally distributed with a log-242 

standard deviation of 0.2 (Table 1). The “catch plus 1” scenario is essentially a stock-reduction 243 

analysis while replacing the assumed information regarding final biomass (as used in stock-244 

reduction analysis) with a length-based catch-curve to estimate fishing mortality in the final year, 245 

which is analogous to Thorson and Cope (2014), except using length-composition samples. We 246 

calculated the expected catch-at-age, using the Baranov catch equation (Table 3, eq. 6), summing 247 

to obtain total annual catch (Table 3, eq. 7), based on the true fishing mortality time series and 248 

selectivity specified in the operating model. The generated standardized abundance index It was 249 

proportional to spawning biomass (Table 3, eq. 8). 250 

When not otherwise stated, we generated data on an annual time step, which assumes 251 

length-composition data are collected instantaneously at the beginning of the year. In fisheries 252 

where only length data and biological information are available (i.e. no catch or abundance 253 

index) it is possible length data would be available on less than an annual time step. We tested 254 

scenarios where length data were collected on a monthly time step, then either pooled into an 255 

annual time step or kept on a monthly time step. The monthly data collection scenario is more 256 

representative of fisheries occurring year-round, with no specific season. Furthermore, length 257 

data on a monthly time step would be more representative of short-lived fish growth, to account 258 

for fish observed between the midpoints of each age class. 259 

 260 
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Estimation model 261 

The structure of LIME follows the structure of the operating model using equations 1-8 in 262 

Table 2 and equations 3-4, and 6-8 in Table 3 to derive the predicted catch, index, and length 263 

composition. LIME requires at least one year of length data, but is flexible to include annual 264 

fishery catch and/or an abundance index. During our simulation testing, we assumed that LIME 265 

had the correct values for the von Bertalanffy length-at-age relationship, including asymptotic 266 

length (L∞), growth coefficient (k), and age at length=0 (t0), length-weight parameters, natural 267 

mortality (M), and the one-parameter logistic maturity-at-length schedule. Future studies can 268 

obtain these values from local studies, FishBase (Froese 1990), or global meta-analyses of fish 269 

life-history parameters (Thorson et al. In press). We tested LIME performance under violations 270 

of these assumptions in sensitivity analyses. We also fixed the values for catch and abundance 271 

index observation error and coefficient of variation in the process error for the age-length curve. 272 

For all data availability scenarios, the model estimates as fixed effects the annual fishing 273 

mortality, lengths at 50% and 95% selectivity, the recruitment standard deviation, and the 274 

Dirichlet-multinomial parameter θ related to the effective sample size of length measurements in 275 

each year. In scenarios when catch data are unavailable, there is no information on the scale of 276 

the population. In these scenarios, we fixed mean recruitment to a relative value of 1.0 so that the 277 

model does not estimate the scale of the population but only the annual deviations in recruitment, 278 

and estimates of relative reference points (e.g. SPR) can be derived but reference points based on 279 

the scale of the population (e.g. MSY) are not meaningful. By contrast, when total catch data are 280 

available for at least one year, we can estimate mean recruitment and derive spawning biomass. 281 

When an index of abundance was available, we estimated the catchability coefficient for that 282 
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index as an additional parameter q. A list of parameters estimated and fixed for each scenario is 283 

presented in Table 1.  284 

We treated annual recruitment as a random effect in LIME, where recruitment each year 285 

is a function of an expected recruitment based on a Beverton-Holt stock recruitment relationship 286 

(Table 4, eq. 1), and the estimated recruitment standard deviation (Table 4, eq. 2). For the 287 

simulation experiments in this paper, we fixed the steepness parameter h of the Beverton-Holt 288 

stock-recruitment function at 1.0, meaning that expected recruitment is constant among years and 289 

independent of the spawning stock biomass the previous year. It is possible to fix the steepness 290 

parameter at a value less than 1.0, where the mean of the lognormal distribution is the predicted 291 

number of recruits from the Beverton-Holt stock-recruitment relationship, as opposed to 1.0 or 292 

the equilibrium unfished recruitment. We chose to test LIME with 1.0 for the mean of the 293 

lognormal distribution to determine how well the model can estimate annual recruitment with all 294 

variation from recruitment deviates. Unfished spawning biomass is calculated using the same 295 

equation as fished spawning biomass (Table 2, eq. 7) but without the fishing mortality and 296 

selectivity terms (Table 2, eq. 9). Unlike the operating model, we did not account for 297 

autocorrelation in recruitment in the LIME estimation model. 298 

We applied a random-walk penalty on annual estimates of fishing mortality, which 299 

shrinks the estimate of fishing mortality in year � + 1 towards its estimate in year � (Table 4, eq. 300 

3). Drastic changes in fishing mortality between years are unlikely in the real world given costs 301 

of entering or leaving a fishery, but the random-walk process accommodates gradual changes in 302 

fishing mortality (Nielsen and Berg 2014). However, a fixed value of 0.2 for the standard 303 

deviation of the fishing mortality penalty does allow the model to estimate variability in fishing 304 

mortality if supported by the data (e.g. exit and entry from the fishery).  305 
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We also placed a lognormal penalty on the standard deviation of recruitment deviations, 306 

��. Based on the meta-analysis conducted by Thorson et al. (2014), the log of the mean was set 307 

to the log of 0.737, with a log standard deviation of 0.353 (Table 4, eq. 4). The prior aids in the 308 

convergence of the �� parameter estimation, preventing the estimate from going to an unlikely 309 

value. There is also an upper bound on �� at 2.0.  310 

The joint log-likelihood of the observed data is the sum of the log-likelihoods of the 311 

observed length data, log-probability of fishing mortality and recruitment variation, and the log-312 

likelihood of the catch and abundance index, if available. We include bias-correction for 313 

recruitment deviations using the TMB bias-correction feature (Thorson and Kristensen 2016). 314 

For scenarios that include abundance index and catch data, a lognormal probability distribution 315 

was assumed to describe error in both data types (Table 4, eq. 7, eq. 8). The respective 316 

observation errors σI and σC are fixed a priori (not estimated as parameters). We assumed the 317 

length data arose from a Dirichlet-multinomial probability distribution with estimated parameters 318 

θc related to the effective sample size of length measurements each year. Many stock assessment 319 

methods use a multinomial distribution to fit age or length data, but the effective sample size 320 

must be calculated externally (Francis 2014). By contrast, the Dirichlet distribution can represent 321 

variability in the proportions in each length bin, but the parameters do not correspond to the 322 

easily interpretable effective sample size of length data for which model results are highly 323 

sensitive. The Dirichlet-multinomial is an alternative to these two distributions, estimating an 324 

additional parameter θ within the integrated model (Thorson et al. 2016). The effective sample 325 

size is a nonlinear function of input sample size (Table 4, eq. 6; Thorson et al. 2016). As θ 326 

approaches infinity, the effective sample size is equal to the observed sample size, and the 327 

multinomial distribution is a special case of the Dirichlet-multinomial distribution.  328 
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In model runs, we assessed that the model had converged if the final gradient for all 329 

parameters was less than 0.001. If the initial model run did not converge (resulting in NAs or a 330 

high final gradient), the model would be run up to ten additional times with starting values equal 331 

to the estimates from the non-converged model plus a random number drawn from a normal 332 

distribution with mean zero and standard deviation 0.2. For each combination of life-history 333 

type, data availability scenario, fishing mortality pattern, and recruitment dynamics, we obtained 334 

100 iterations of generated data and ran the estimation model for each set. 335 

 336 

Comparison to LB-SPR 337 

We ran LB-SPR from the R package LBSPR (Hordyk et al. 2015) with one year (LBSPR 338 

1) and ten years (LBSPR 10) of length data using the operating model described above. LB-SPR 339 

requires as input the length data in each year and the ratio of natural mortality to the von 340 

Bertalanffy growth coefficient (M/k), as well as inputs similar to those required for LIME: the 341 

von Bertalanffy asymptotic length parameter, coefficient of variation of the asymptotic length, 342 

length at 50% and 95% maturity, length-weight parameters, and starting values for the length at 343 

50% and 95% selectivity (Table 1). We assumed the coefficient of variation of the asymptotic 344 

length was equivalent to the coefficient of variation of the entire age-length curve. For the base 345 

runs, we used the true value for the length at 95% maturity and selectivity from the two-346 

parameter logistic curves used in the operating model. LB-SPR uses these inputs to calculate the 347 

abundance at relative age at equilibrium. LB-SPR estimates the ratio of fishing mortality to 348 

natural mortality and the lengths at 50% and 95% selectivity to best fit the predicted and 349 

observed length composition proportions, and derives SPR, outputting estimates for these four 350 

values for each year with length data (Hordyk et al. 2015).  351 
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We note that this simulation experiment is comparing performance of LIME and LB-SPR 352 

using an operating model that is more similar to LIME. To further compare the strengths and 353 

limitations of each method, we used the LBSPR package to simulate length data under the LB-354 

SPR equilibrium, length-based structure, so that we could also test LIME and LB-SPR using an 355 

operating model that is more similar to LB-SPR.  356 

A major issue in the comparison of models was the time step used. To test model 357 

performance, we tested both the LIME and LB-SPR methods using the monthly data generation 358 

feature in the operating model, where sampling is spread out over all twelve months instead of 359 

collected instantaneously at one point. We then compared LIME and LB-SPR performance 360 

pooling the monthly length data into an annual distribution and then running each model on an 361 

annual time step. These additional simulation tests were designed to compare these two methods 362 

under different data-generating models, with the goal of providing guidance for which methods 363 

may be appropriate under a variety of real-world conditions.  364 

 365 

Reference points 366 

We calculated SPR (Table 2, eq. 10-12) as a biological reference point, used as a proxy 367 

for MSY when information on the scale of population size is not available, and for comparison 368 

with LB-SPR. A harvest strategy that targets a fishing mortality rate that is expected to result in 369 

40% of unfished spawning output (termed “40% SPR”), is considered risk averse for many 370 

species (Clark 2002). Therefore, we calculated these values as examples of possible fishing 371 

mortality reference points that could be used to compare to other length-based assessment 372 

methods.  373 

 374 
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Sensitivity tests 375 

Preliminary exploration suggested that LIME performed poorly for short-lived species 376 

when using an annual time step, therefore we explored LIME performance on a monthly time 377 

step. We generated monthly length data for the short-lived life-history type and ran LIME on a 378 

monthly time step by specifying the number of years as number of months, ages as fractions of a 379 

year, and dividing the input natural mortality rate M by twelve so that mortality and growth 380 

occurs in each month (Figure A1). 381 

We also included sensitivity tests to LIME base models to understand biases associated 382 

with imperfect knowledge about species biology, fishery characteristics, and low sample sizes. 383 

We assessed the performance of LIME with (a) parameter misspecification of +/- 25% for each 384 

of the life history inputs (M, CVL, L∞, k, and ����) and (b) sample sizes of length data of 20, 50, 385 

100, 500, and 1,000 independent samples annually.  386 

 387 

Model performance 388 

To assess the ability of the model to accurately and precisely estimate quantities of 389 

management interest, we consider bias and precision (Table 4, eq. 9-10) between estimated and 390 

true SPR in the last year of data across the 100 iterations of simulated data. We used median 391 

relative error (MRE; Table 4, eq. 9) to quantify bias, and median absolute relative error (MARE; 392 

Table 4, eq. 10) to quantify precision. To understand the ability of the model to accurately 393 

capture uncertainty, we computed the “interval coverage”, the proportion of iterations out of 100 394 

where the true value of a population parameter in the terminal year is within the 50% confidence 395 

intervals. A well-performing model would have close to nominal coverage (i.e., a 50% coverage 396 
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interval will contain the true value in 50% of simulation replicates). Coverage is presented to 397 

illustrate whether confidence intervals accurately capture model uncertainty.  398 

 399 

Results 400 

LIME performance across life history, variability, and data scenarios 401 

Based on the Monte Carlo simulations, LIME can estimate unbiased SPR when length 402 

data are available and biological characteristics are correctly specified across various scenarios 403 

of fishing mortality and recruitment patterns (Figure 4). When tested using the same model 404 

structure and assumptions in the operating model, LIME performed best for short-lived fish, with 405 

increasing bias and decreasing precision for medium-lived fish, and a further deterioration for 406 

longer-lived fish (Table 5). The bias in SPR in the terminal year was 0.002 for short-lived, -0.003 407 

for medium-lived, and 0.016 for longer-lived fish across all data availability and population 408 

variability scenarios with 200 length measurements annually. Additional scenarios illustrate 409 

further LIME strengths and weaknesses (Table 5). With only one year of length data, LIME 410 

estimated SPR with bias of -0.038 for the short-lived life history, -0.186 for medium-lived, and -411 

0.152 for longer-lived across variability scenarios. Integrating ten years of length data improved 412 

accuracy in the estimation of SPR in the terminal year on average for each life history type 413 

(short-lived from -0.038 to -0.016; medium-lived from -0.186 to -0.048; longer-lived from -414 

0.152 to 0.102). The only exception within variability scenarios was decreased accuracy with ten 415 

years of length data for the longer-lived life-history type under the one-way variability scenario 416 

(from -0.181 to 0.200). While ten years of length data increased precision of SPR estimates for 417 

the short-lived life-history type over one year of length data (from 0.072 to 0.041), the additional 418 
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length data decreased precision on average for the medium- and longer-lived life-history types 419 

(medium-lived from 0.334 to 0.391; longer-lived from 0.529 to 0.626; Table 5).  420 

LIME provides the added advantage over other length-based assessment methods of 421 

including a catch time series and abundance index, if available, which further increases accuracy 422 

and precision under most cases. Across all scenarios, including an abundance index decreased 423 

bias (from -0.047 to 0.020) compared to when only length data were available. An abundance 424 

index particularly improved LIME performance for the short- and medium-lived life-history 425 

types. Breaking down by life-history types, bias decreases with an abundance index included for 426 

the short-lived life-history type (from -0.026 to 0.005) and medium-lived life-history type (from 427 

-0.126 to 0.025), but increases for the longer-lived life-history type (from -0.049 to 0.072) on 428 

average. Across all life-history types, including an abundance index increases precision (short-429 

lived from 0.054 to 0.052; medium-lived from 0.346 to 0.190; longer-lived from 0.594 to 0.257).  430 

Adding a catch time series to length data decreased bias minimally on average across all 431 

scenarios (from -0.047 to 0.031). The improvement in accuracy is strongest under equilibrium 432 

conditions (from -0.036 to -0.007). Given variable fishing mortality and recruitment, including 433 

catch data with length composition increased bias (from -0.055 to 0.118). This was mainly due to 434 

high bias in the “catch plus one” scenario for short-lived fish (Table 5, Figure 4). Excluding this 435 

anomalous scenario, including a catch time series decreased bias for a population with variability 436 

(from -0.055 to 0.047). The “catch plus ten” scenario removed the bias from the “catch plus one” 437 

scenario for the short-lived life-history type under variability scenarios. However, the “catch plus 438 

ten” scenario did not necessarily improve bias nor precision over the “catch plus one” scenario 439 

for the medium- and longer-lived life-history types under variability scenarios (Table 5). This 440 

indicates that it may be advisable to include a catch time series only when more than one year of 441 
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length data are available for a short-lived life-history type, and consider the possibility of over-442 

estimating SPR when fishing mortality is changing over time for medium- and longer-lived life-443 

history types when catch data are included.  444 

LIME converged for 95% of iterations of generated data across life-history types, 445 

variability scenarios, data availability scenarios, and sample sizes of length data. LIME 446 

converged for 100% of iterations of generated data for the data-rich scenario (Figure 5). With 447 

only length data, LIME converged for 95% of iterations across scenarios. The LIME 448 

convergence rate was 92% including catch data and 94% including an abundance index. Non-449 

convergence was always due to a high final gradient in parameter estimation, as opposed to any 450 

parameter being estimated at the upper or lower bound.  451 

The interval coverage for a 50% confidence interval of LIME was 61% across all 452 

scenarios of life history, variability scenarios, data availability, and sample sizes of length data. 453 

This indicates confidence interval estimates from LIME are generally informative about model 454 

uncertainty, but may be wider (more conservative) on average. LIME estimated confidence 455 

intervals that were too narrow or wide for individual life history, variation, and data availability 456 

scenarios (Figure 5). The “catch plus one” scenario had the lowest coverage across life-history 457 

and variability scenarios (42%), likely because this data availability scenario had the most bias, 458 

and thus the true SPR would likely not fall within the confidence intervals at the expected rate. 459 

For the short-lived life-history type, LIME interval coverage was only 43%. While the method is 460 

expected to be unbiased for this life-history type on average, the confidence intervals are often 461 

too tight to include the true SPR within the 50% intervals at a rate of 50%. LIME estimated 462 

wider confidence intervals for the medium-lived life-history type, with interval coverage 72%, 463 

and longer-lived life-history types, with an interval coverage of 67%.  464 
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 465 

LIME sensitivity to sample size, input parameters, and selectivity estimation 466 

With one year of length data, LIME estimated SPR with greater precision with more 467 

length measurements, but not necessarily with greater accuracy (Table 6). Across all life history 468 

types, accuracy and precision improved greatly in the equilibrium scenario between 20 and 1,000 469 

length measurements collected annually. The short-lived life-history type experienced the 470 

strongest improvements in accuracy and precision (Table 6). This pattern was strongest with a 471 

population in equilibrium, but was generally maintained for scenarios of variability as well. 472 

Accuracy generally reached a plateau with greater than 100 samples of length measurements for 473 

the short-lived life-history type. Alternatively, accuracy and precision improved for the medium- 474 

and longer-lived life-history types with at least 500 samples of length measurements for a 475 

population at equilibrium. With variability, there were no clear patterns in accuracy improvement 476 

for the medium- and longer-lived life-history types with increasing sample size of length 477 

measurements. This indicates accuracy in SPR estimates is more likely to be improved with 478 

more data types than increasing sample size, particularly for medium- and longer-lived life 479 

histories (Table 5, Table 6). 480 

Like all age or length-based methods, LIME performance is sensitive to the correct 481 

specification of life history information (Figure 6). When all biological parameters were 482 

correctly specified, LIME estimated unbiased SPR on average with ten years of length data (bias 483 

= -0.017). When L∞ was misspecified as 25% greater than the truth, bias increased (to -0.554), 484 

meaning that on average LIME estimated SPR to be lower than the truth. In this case, we would 485 

expect to see larger fish in the observed data. If those fish are not present in the length data, 486 

length-based models attribute the difference to a higher fishing mortality, and thus a lower SPR 487 
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than the truth. On the other hand, when L∞ was misspecified as 25% lower than the truth, LIME 488 

estimated SPR higher than the truth on average (bias = 0.761). Assuming k was 25% lower than 489 

the truth, LIME estimated SPR higher than the truth on average (bias = 0.478). When k was 490 

assumed to be 25% higher than the truth, LIME estimated SPR lower than the truth on average, 491 

but to a lower degree than the other biases due to life history misspecification (bias = -0.146). 492 

However, this lack of severe bias is simply due some model runs resulting in estimates much 493 

greater than or lower than the truth, while none are unbiased. When M was fixed 25% higher 494 

than the truth, LIME estimated SPR to be higher than the truth (bias = 0.285). A fish that is faster 495 

to die can generally sustain a higher fishing pressure, and the interpretation of the higher SPR is 496 

that the population has more of its potential spawning biomass than it truly does. When M was 497 

assumed to be 25% lower than the truth, LIME estimated SPR lower than the truth (bias = -498 

0.352).  499 

Fixing length at 50% maturity at a value 25% higher than the truth resulted in negative 500 

bias in SPR (bias = -0.383). In this case the LIME model attributes a lower proportion of the 501 

population as being mature, leading the estimated SPR to be lower than the truth. The opposite is 502 

true when length at maturity was 25% lower than the truth; estimates of SPR were biased higher 503 

than the truth (bias = 0.152). LIME was relatively insensitive to misspecification of CVL for the 504 

age-length curve, but a higher CVL resulted in a relatively lower estimate of SPR on average 505 

(bias = -0.044), and a higher CVL resulted in a relatively higher estimate of SPR on average (bias 506 

= 0.047). 507 

 508 

Comparing LIME and LB-SPR 509 
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Simulation testing demonstrated that the LIME and LB-SPR methods perform well under 510 

different conditions. LB-SPR is biased when the equilibrium conditions are violated (Table 5). 511 

However, testing of LB-SPR against the age-structured LIME operating model with 512 

instantaneous sampling at the beginning of each year resulted in poor performance for the short-513 

lived life-history type under equilibrium conditions (Table 5, Table 7, Figure 7). We verified that 514 

LB-SPR performs well across life-history types when tested using an operating model that 515 

matches its model assumptions. LIME, on the other hand, over-estimated SPR for the short-lived 516 

life history type with one year of length data and, similar to the performance under its own 517 

operating model, had low precision for the medium- and longer-lived life history types with ten 518 

years of length data (Table 7). When length data were collected monthly and pooled into an 519 

annual length composition, LB-SPR performance improved over the annual model for the short-520 

lived life history type, but LIME over-estimated SPR (Table 7, Figure 7). Running LIME on a 521 

monthly time step with monthly length data decreased bias compared to running on an annual 522 

time step (from 0.468 to -0.040 with ten years of monthly length data and 0.484 to 0.034 with 523 

one year of monthly length data; Table 7).  524 

 525 

Discussion 526 

This study demonstrates that the length-based integrated mixed-effects (LIME) method 527 

can be a valuable tool for fisheries stock assessment when at least one year of length data and 528 

basic biological information are available for the species (Table 8). LIME estimates reference 529 

points more accurately than LB-SPR under many common scenarios. The LIME assessment 530 

method has several characteristics that make it particularly useful in situations where an 531 

abundance index and/or catch data cannot be collected reliably, as data collection programs 532 
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improve to include more data types, and when recruitment and fishing mortality are believed to 533 

be changing more rapidly than would match the equilibrium assumptions required for existing 534 

methods with the same data requirements. 535 

The length-based aspect of the model setup allows the analyst to fit to length, rather than 536 

age, composition data from the catch. The current toolbox of data-limited stock assessment 537 

methods includes length-only methods with equilibrium assumptions (Hordyk et al. 2015; Nadon 538 

et al. 2015; Kokkalis et al. 2015), ad hoc assumptions about changes in mortality (Gedamke and 539 

Hoenig 2006), or age-structured models that cannot fit to length-composition data (Martell and 540 

Froese 2013; Thorson and Cope 2014). MULTIFAN (Fournier et al. 1990) and Stock Synthesis 541 

(Methot and Wetzel 2013) can use length instead of age data to gain information on cohort 542 

strength and total mortality, but require a catch time series to estimate stock status. The 543 

flexibility of LIME to fit to length composition, as opposed to age-composition, is more realistic 544 

for capacity-limited fisheries. LIME can be used in conjunction with other length-based methods 545 

as a diagnostic tool to see if variations in recruitment or fishing mortality are being predicted by 546 

the model based on the length data, and how the results of the multiple assessment types would 547 

vary in light of those possibly violated assumptions.  548 

The integrated nature of LIME is useful in situations where monitoring programs are 549 

continuing to be developed over time, incorporating more years of length data or other data types 550 

in the same assessment framework. LB-SPR is a quick way of conducting an assessment with 551 

only one year of length data, but as monitoring programs improve, the method must be applied 552 

independently over multiple years (Prince et al. 2015a, 2015b). There are also many catch-based 553 

methods that assume a catch time series is available, but they are not thoroughly tested in fitting 554 

to length, rather than age, composition data (Sabater and Kleiber 2013; Martell and Froese 2013; 555 
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Thorson and Cope 2014). LIME allows for these data to be included into the same assessment 556 

framework, rather than requiring a switch between assessment models as monitoring programs 557 

develop and new data types become available (Maunder and Punt 2013). Also, few existing 558 

models can incorporate an abundance index and length data without catch data. LIME can be 559 

used in this scenario to estimate a relative SPR reference point with no measure of scale. This 560 

scenario is common for small-scale fisheries, bycatch species, or other fisheries where trends in 561 

abundance are available but total harvest is not.  562 

Finally, the mixed effects aspect of LIME extends length-based methods by estimating 563 

changes in recruitment and fishing mortality over time. Estimating random effects has been 564 

integrated into existing stock assessment models, such as Stock Synthesis (Thorson et al. 2015a) 565 

and the state-space assessment model (SAM) framework (Nielsen and Berg 2014). Many 566 

assessments for European stocks now use SAM to separate process and observation errors as an 567 

objective method of weighting data in age-structured models (Berg et al. 2014). Computing the 568 

marginal likelihood for mixed-effects models was previously too computationally challenging, 569 

hindering wide application of mixed-effects models. Now, programs such as TMB can do these 570 

computations much faster than previous options (Nielsen and Berg 2014). To illustrate the 571 

benefits of LIME, a vignette is available on the repository site that walks the user through a 572 

simple example, with tips for model interpretation and convergence. An app using the R package 573 

shiny (Chang et al. 2017) is also available on the repository site 574 

(https://github.com/merrillrudd/LIME_shiny) that allows analysts to run the model in a graphical 575 

user interface.  576 

Simulation testing in this study demonstrated the best LIME performance with only 577 

length data for the short-lived life-history type, with comparatively lower performance for 578 

Page 26 of 56
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
on

 0
9/

05
/1

7
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



27 

 

medium- and longer-lived fish. With only length data, LIME performs well for the shorter-lived 579 

fish likely because the model is tracking cohorts through the length data to estimate recruitment 580 

deviations. This is likely difficult for the longer-lived life histories due to variation in the age-581 

length relationship (especially for older fish), and because each individual cohort represents a 582 

small proportion of total abundance (hence requiring more samples to track each individual 583 

cohort). The increasing uncertainty in a longer-lived fish’s age with increasing length blurs the 584 

cohorts as they age, making it difficult to track recruitment events without a much longer time 585 

series of length data. With ten years of length data, accuracy in estimating SPR increases but 586 

precision decreases for the medium- and longer-lived life-history types, providing support for the 587 

increased ability to track recruitment events but propagating uncertainty in the age-length curve 588 

for older individuals. With short-lived fish that only live to four years old, each length more 589 

clearly matches up with an age group. Regardless of fish growth, one year of length data holds 590 

information on an entire generation for a short-lived fish. Even if recruitment is occurring 591 

monthly or seasonally and not annually, a ten-year time series of length data can inform variation 592 

in cohort strength across several generations of the short-lived fish.  593 

By testing LIME and LB-SPR using multiple operating models, we identified scenarios 594 

in which each method excels. LB-SPR performs better than LIME for estimating SPR if the 595 

population is at equilibrium and only length data are available. If the population is not in 596 

equilibrium, then LIME performs better. If the data are collected continuously throughout the 597 

year (e.g. monthly), LIME is expected to estimate higher SPR than the truth for short-lived fish. 598 

In this case, analysts should run LIME using monthly (or shorter) time steps to account for fish 599 

growth during the year. This bias does not occur for medium- or longer-lived fish, where the 600 

growth during the year is less rapid. On the other hand, LB-SPR likely under-estimates SPR for 601 

Page 27 of 56
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
on

 0
9/

05
/1

7
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



28 

 

short-lived fish if data are collected instantaneously, but is unbiased if data are collected 602 

continuously.  603 

An important question for management is often how many years or how much data are 604 

enough, particularly for fisheries where funding for monitoring is limited. The simulation testing 605 

in this study demonstrated that we can get accurate but highly uncertain estimates of SPR, 606 

fishing mortality, and recruitment from only one year of length data on average (Figure 8). As 607 

expected, collecting more data (ten years of length data instead of one) resulted in greater 608 

accuracy and precision in LIME estimates of SPR (Figure 4, Table 5). When using only length 609 

data, LIME performance is best with at least 500 independent length measurements per year for 610 

medium- and longer-lived life histories, but is expected to perform well with 100 or more length 611 

measurements per year for short-lived life-history types (Table 6). However, including an 612 

abundance index or catch time series improves bias and precision to a greater extent than 613 

collecting more independent length measurements (Table 5, Table 6). Managers must determine 614 

how much uncertainty they are comfortable with to set monitoring goals. Collecting more years 615 

of length data, taking more independent length measurements during each year of length data 616 

collection, conducting surveys, and monitoring catch data hold varying levels of information 617 

used to estimate variable fishing mortality and recruitment. Their costs and benefits should be 618 

weighed to help managers prioritize data collection.  619 

Including an abundance index or catch time series improves LIME performance in most 620 

scenarios. Catch data provides useful information on the scale of the population, which is not 621 

possible with length data alone. The abundance index provides useful information to help inform 622 

the trajectory of the population from which the length data arose. The abundance index could be 623 

more informative on the state of the population than length data alone, as long as the abundance 624 
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index is proportional to abundance and any significant changes in fishing mortality and 625 

recruitment occurred during the surveyed time series. Our simulation study shows that the biases 626 

associated with including a time series with one year of length data are often overcome with 627 

more years of length data. The exception is for the longer-lived life history type, for which LIME 628 

performs worse when including an abundance index with ten years of length composition data 629 

than if the abundance index was excluded.  630 

However, the simulation study also identified some potential issues with data conflict 631 

when an abundance index or catch time series are included with length data. Data conflict can be 632 

diagnostic of poor data quality, such as catch misreporting, indices from spatial areas with 633 

ontogenetic differences, or length data not representative of the fishery. Data quality is an 634 

equally important issue as limited data types and should be considered in LIME applications. In 635 

the case of this study, however, poor data quality was not the culprit behind any data conflict 636 

because we used the true catch data, abundance index from a single area, and representative 637 

length data to test LIME. To avoid data conflict, Maunder and Piner (2015) recommend 638 

modeling process error explicitly, most commonly via time-varying recruitment, as a better 639 

alternative to down-weighting or eliminating data conflicts. LIME takes this approach, but data 640 

conflict may still occur, particularly because recruitment deviations are treated as a random 641 

effect even if this is not the correct model process for which the data hold conflicting information 642 

(Maunder and Piner 2015). Other options to avoid data conflict are to estimate the variance 643 

parameter for observed data outside of the stock assessment model (Lee et al. 2014; Maunder 644 

and Piner 2015). Alternatively, an analyst could identify whether data conflict is occurring in the 645 

LIME model by likelihood profiling individual data components (Ichinokawa et al. 2014) or 646 
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retrospective analysis, which quantifies the impact of additional years of data on the stock 647 

assessment output (Hurtado-Ferro et al. 2014). 648 

Like all length-based assessment methods, fixing the biological parameters at their true 649 

values is an important first step for estimating unbiased reference points. LB-SPR circumvents 650 

this strong assumption by using Beverton-Holt life history invariants to estimate the expected 651 

age or length structure, as opposed to assuming known values of natural mortality and growth 652 

(Prince et al. 2015a). Sensitivity tests in this study demonstrating the impact of misspecifying 653 

biological parameters provide support for local studies of species growth rates for stocks 654 

assessed using LIME. Analysts should be aware of how SPR is expected to be biased given their 655 

assumptions on fixed values for input parameters or model structure. A next step for LIME is to 656 

use Bayesian priors on biological parameters to more thoroughly represent the uncertainty in 657 

population parameter estimates relevant to management (e.g., from FishLife; Thorson et al. In 658 

press). Sensitivity tests and likelihood profiles should be conducted on different levels of dome-659 

shaped selectivity to understand how SPR is expected to be biased if the model structure is 660 

misspecified.  661 

Length-based stock assessments are good starting-points for making management 662 

decisions with limited data and monitoring capacity. The shrinkage of poorly estimated 663 

parameters towards an estimated distribution (as implemented within mixed effects models) has 664 

been shown to increase accuracy and precision in stock assessments (Thorson et al. 2013; 665 

Nielsen and Berg 2014), but high uncertainty in estimates of stock status will always result if 666 

there are only one or two years of length data. Any stock assessment deals with data limitation 667 

and uncertainty, and it is vital to appropriately represent and communicate this uncertainty to 668 

managers.  669 
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Ideally, conclusions on stock status should be drawn using an ensemble of assessment 670 

models with varying structure and assumptions (Stewart and Martell 2015; Anderson et al. 671 

2017). In the data-limited context, existing models represent a relatively small range of 672 

alternative model assumptions. We have shown that LIME presents a way to represent both 673 

process and observation uncertainty. LIME can complement other length-based (Hordyk et al. 674 

2015; Nadon et al. 2015; Gedamke and Hoenig 2006) and catch-only methods (Rosenberg et al. 675 

2014; Carruthers et al. 2014), with the strength of estimating recruitment variability. More 676 

accurate and precise estimates of recruitment variability can help decipher whether decreased 677 

mean length is due to fishing pressure or recruitment variability, and understanding the range of 678 

possible levels of recruitment into the future. We therefore conclude that LIME is a step forward 679 

in dealing with uncertainty in decision-making for fisheries where length data are collected. 680 
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Table 1. Parameter definitions, including parameter input values for the base scenario for each of 877 

the three life history types, and whether the parameter is fixed (“Fixed”) or estimated (“Est.”) 878 

depending on the data availability scenario, or if the parameter is used in data generation only 879 

(“Sim.”). Values separated by commas indicate alternate values for sensitivity analysis. Note that 880 

scenarios including “LC” are each divided into two scenarios with either one or ten years of 881 

length data. Parameter input values are based on short-lived Siganus sutor (Hicks and 882 

McClanahan 2012), medium-lived Lutjanus guttatus (Bystrom 2015), and longer-lived 883 

Epinephelus morio (Heemstra and Randall 1993). 884 

 Description Input value Data Scenario 

Symbol  Life history type 

Rich 

Index 

+ LC 

Catch 

+ LC 

LC 

only Biological Short Medium Longer 

L∞ Asymptotic length 36.2cm 64.6cm 90.0cm Fixed Fixed Fixed Fixed 

k Brody growth coefficient 0.87 0.21 0.13 Fixed Fixed Fixed Fixed 

to Age at length=0 -0.01 -0.01 -0.01 Fixed Fixed Fixed Fixed ���� Length at 50% maturity 20.2cm 34.0cm 50.0cm Fixed Fixed Fixed Fixed 

α Length-weight scalar 0.0597 0.0245 0.0264 Fixed Fixed Fixed Fixed 

β Length-weight allometric 2.75 2.79 2.96 Fixed Fixed Fixed Fixed 

A Maximum age 4 18 26 Fixed Fixed Fixed Fixed 

M Natural mortality 1.49 0.43 0.18 Fixed Fixed Fixed Fixed 

h Steepness parameter 1 1 1 Fixed Fixed Fixed Fixed 

CVL Coefficient of variation for the length-

age curve 

0.1 0.1 0.1 Fixed Fixed Fixed Fixed 

J Maximum length bin 54cm 97cm 135cm Fixed Fixed Fixed Fixed 

R0 Equilibrium recruitment 1 1 1 Est. Fixed Est. Fixed 

σR Recruitment standard deviation 0.737 0.737 0.737 Est. Est. Est. Est. 

ρ Recruitment autocorrelation 0.426 0.426 0.426 Sim. Sim. Sim. Sim. 

         

Non-biological        ���� Length at 50% selectivity 11.3cm 20.0cm 25.0cm Est. Est. Est. Est. 

δ Difference ����	- ���� 

(expressed here as ratio ����	/����	to 

compare across life histories) 

1.3 1.3 1.3 Est. Est. Est. Est. 

q Catchability coefficient 1e-5 1e-5 1e-5 Est. Est. Fixed Fixed 

σF Fishing mortality penalty standard 

deviation 

0.2 0.2 0.2 Fixed Fixed Fixed Fixed 

σc Standard deviation for observed catch 0.2 0.2 0.2 Fixed Fixed Fixed Fixed 

σI Standard deviation for observed 

abundance index 

0.2 0.2 0.2 Fixed Fixed Fixed Fixed 

θ Dirichlet-multinomial parameter 

related to effective sample size 

10 10 10 Est. Est. Est. Est. 

n Sample size of length measurements 200 200 200 Fixed Fixed Fixed Fixed 

ϕ Cumulative normal probability 

distribution 

       

 885 

  886 
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Table 2. Population dynamic equations used in the operating model and LIME estimation model.  887 
 Equation Description 

1 �� = ��(1 − exp�−�(� − ����� Von Bertalanffy 

length-at-age a 

2 �� = 1/(1 + exp(���� − ��� Maturity-at-length 

3 �� = ���  1��!"#√2&' exp	(−
(� − ���(2��!"#( �

)

�*+
 

Maturity-at-age 

4 ,� = 1/(1 + exp  − ln(19� (� − ��������� − ���� '� Logistic selectivity-

at-length 

5 0� = 1��2  Weight-at-age 

6 34 = �5�,40�
7

�*+
 

Annual total 

population biomass 

7 ,34 = �5�,40���
7

�*�
 

Annual spawning 

biomass 

8 

5�,4 =
899
:
99;

<4 , � = 05�>+,4exp	(−? − @4,�>+�, 0 < � < B and t=15�>+,4 exp(−? − @4,�>+�1 − exp(−? − @4,�>+� , � = B	and t=1

5�>+,4>+exp	(−? − @4>+,�>+�, 0 < � < B and t > 1(5�>+,4>+ + 5�,4>+�exp	(−? − @4>+,�>+�, � = B	and t > 1

 

Abundance at age 

over time 

9 ,3� = �<�exp	(−�?�0���
7

�*�
 

Unfished spawning 

biomass 

10 C� = �exp	(−�?�0���
7

�*�
 

Expected lifetime 

egg production 

(unfished) 

11 CD = �exp	(−�(? + @,���0���
7

�*�
 

Expected lifetime 

egg production 

(fished) 

12 ,E< = CDC� 
Spawning potential 

ratio 

 888 

  889 
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Table 3. Functions for generating data in the operating model. All except Equations 2 and 5 are 890 

also used in the LIME estimation model to predict values for the observed data.  891 
 Equation Description 

1 F4~�HIJHK��L(0, ��� Non-autocorrelated 

recruitment deviations 

2 M4 = F4 � = 1M4 = F4M4>+NO1 − N( � > 1 
Autocorrelated 

recruitment deviations 

3 

Q�,� =
899
:
99; ∅S� − ����!"#T , � = 1
∅ S� − ����!"#T − ∅ S� − 1 − ����!"# T , 1 < � < U

1 − ∅ S� − 1 − ����!"# T , � = U
 

Probability of being in 

a length bin given age 

4 &� = Q�,� ∑ 5�,4,�7�*�54  
Predicted probability of 

harvest by length bin 

5 &W�~?XL�YJH�Y�L(J, &�� Generated probability 

of harvest by length bin 

6 !�,4 = @4,�? + @4,� 5�,4(1 − exp(−? − @4,��� Annual catch at age 

7 !4 = �!�,4
7

�*�
 

Annual catch 

8 Z4 = [34 Abundance index 

 892 

  893 
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Table 4. Components of the joint likelihood function in the LIME model, as well as performance 894 

metrics across iterations of generated data. 895 
 Equation Description 

1 \�4 = 4ℎ<�,34>+,3�(1 − ℎ� + ,34>+(5ℎ − ℎ − 
Expected annual 

recruitment based 

on Beverton-Holt 

stock-recruit 

relationship 

2 <4~�HIJHK��L(\�4 , ��(� Annual recruitment 

Rt arising from a 

lognormal 

distribution 

3 @4~5HK��L(@4>+, ��(� Penalty on annual 

fishing mortality Ft 

4 ��~�HIJHK��L(0.7, 0.2(� Recruitment 

standard deviation 

penalty 

5 LHI��&� , bc&W� , J� = LHId(J + 1� −�(LHId�J&W� + 1�� + LHId(bJ�
− LHId(J + bJ� +�(LHId�J&W� + bJ&�� − LHId�bJ&��� 

Dirichlet-

multinomial log-

likelihood 

6 JeDD = (1 + bJ�/(1 + b� Effective sample 

size 

7 !4fg�~�HIJHK��L(�!4 , �h(�
7

�*�
 

Lognormal 

likelihood (catch) 

8 Z4fg�~�HIJHK��L([34 , �i(� Lognormal 

likelihood 

(abundance index) 

9 ?<C = �jkY�J Sle�4m��4en − l4opel4ope T 
Median relative 

error to quantify 

bias 

10 ?B<C = �jkY�J Sqle�4m��4en − l4opel4ope qT 
Median absolute 

relative error to 

quantify precision 

 896 
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Table 5. LIME performance in estimation of SPR in the terminal year across life-history types, scenarios of data availability, and 

patterns in fishing mortality and recruitment variability, compared with LB-SPR. Bias (top) is measured as median relative error and 

precision (bottom) is measured as median absolute relative error from 100 iterations of generated data using the LIME age-structured 

operating model assuming instantaneous sampling with 200 length measurements annually. Dark green indicates bias/precision less 

than 5%, light green indicates bias/precision less than 10%, yellow indicates bias/precision less than 20%, light blue indicates 

bias/precision less than 30%, and dark blue indicates bias/precision greater than 30%.  
    

Data 

availability 

scenario  

Short   Medium   Longer   

Bias (MRE) Equilibrium 

Variability, 

two-way F 

Variability, 

one-way F Equilibrium 

Variability, 

two-way F 

Variability, 

one-way F Equilibrium 

Variability, 

two-way F 

Variability, 

one-way F 

Rich -0.019 -0.017 0.023 -0.004 0.005 0.034 0.001 0.012 0.023 

Index+LC10 -0.014 -0.039 0.023 -0.049 -0.001 0.094 0.125 0.173 0.076 

Index+LC1 0.012 -0.006 0.033 -0.003 0.060 0.065 0.040 -0.061 0.029 

Catch+LC10 -0.018 -0.045 0.018 -0.021 0.150 0.165 -0.002 0.124 0.280 

Catch+LC1 0.029 0.796 0.972 -0.056 0.119 0.193 0.010 -0.146 0.236 

LC10 -0.022 -0.056 0.016 -0.086 -0.137 0.072 0.104 -0.006 0.200 

LC1 -0.045 -0.082 -0.025 -0.140 -0.355 -0.154 0.166 -0.468 -0.181 

LBSPR10 -0.570 -0.676 -0.708 0.006 -0.405 0.196 0.062 -0.359 0.452 

LBSPR1 -0.603 -0.698 -0.738 -0.030 -0.372 -0.181 0.059 -0.403 0.296 

Precision (MARE)         

Rich 0.027 0.069 0.028 0.038 0.044 0.101 0.038 0.042 0.089 

Index+LC10 0.039 0.051 0.038 0.185 0.176 0.295 0.244 0.449 0.352 

Index+LC1 0.046 0.079 0.062 0.105 0.207 0.235 0.180 0.223 0.223 

Catch+LC10 0.025 0.055 0.035 0.080 0.382 0.476 0.077 0.423 0.630 

Catch+LC1 0.060 0.796 0.972 0.129 0.429 0.496 0.161 0.313 0.714 

LC10 0.028 0.063 0.031 0.246 0.499 0.470 0.498 0.743 0.702 

LC1 0.072 0.126 0.039 0.216 0.437 0.362 0.301 0.705 0.549 

LBSPR10 0.570 0.676 0.708 0.066 0.412 0.404 0.078 0.367 0.486 

LBSPR1 0.603 0.698 0.738 0.113 0.478 0.432 0.120 0.501 0.536 
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Table 6. LIME bias and precision in estimating SPR in the terminal year for a variety of sample size of independent length 

measurements. In all cases one year of length data are provided to the model. Bias (top) is measured as median relative error and 

precision (bottom) is measured as median absolute relative error from 100 iterations of generated data using the LIME age-structured 

operating model assuming instantaneous sampling. Dark green indicates bias/precision less than 5%, light green indicates 

bias/precision less than 10%, yellow indicates bias/precision less than 20%, light blue indicates bias/precision less than 30%, and dark 

blue indicates bias/precision greater than 30%.  
Sample size Short Medium Longer 

Bias (MRE) Equilibrium 

Variability, 

two-way F 

Variability, 

one-way F Equilibrium 

Variability, 

two-way F 

Variability, 

one-way F Equilibrium 

Variability, 

two-way F 

Variability, 

one-way F 

1000 -0.033 -0.070 -0.029 0.034 -0.369 -0.201 -0.061 -0.449 -0.201 

500 -0.028 -0.117 -0.041 -0.001 -0.505 -0.157 -0.031 -0.621 -0.145 

200 -0.045 -0.082 -0.025 -0.140 -0.355 -0.154 0.166 -0.468 -0.181 

100 -0.027 -0.070 -0.028 -0.055 -0.370 -0.201 -0.127 -0.480 -0.206 

50 -0.082 -0.124 -0.041 -0.182 -0.499 -0.163 -0.141 -0.621 -0.107 

20 -0.171 -0.153 -0.043 -0.295 -0.431 -0.214 -0.465 -0.751 -0.451 

Precision (MARE)         

1000 0.070 0.148 0.048 0.110 0.443 0.422 0.240 0.648 0.474 

500 0.053 0.172 0.047 0.125 0.514 0.423 0.245 0.663 0.519 

200 0.072 0.126 0.039 0.216 0.437 0.362 0.301 0.705 0.549 

100 0.087 0.147 0.046 0.217 0.453 0.429 0.397 0.665 0.503 

50 0.108 0.178 0.046 0.343 0.510 0.455 0.421 0.665 0.506 

20 0.228 0.168 0.045 0.374 0.469 0.610 0.547 0.754 0.615 
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Table 7. Comparison of LIME and LB-SPR performance in estimation of SPR in the terminal year between equilibrium scenarios with 

length data collected annually and using an annual model, length data collected monthly but pooled annually for an annual model, and 

using the LB-SPR operating model. We also compared the annual model runs with monthly length data run on a monthly time step for 

the short-lived life-history type. Bias (top) is measured as median relative error and precision (bottom) is measured as median absolute 

relative error from 100 iterations of generated data. Dark green indicates bias/precision less than 5%, light green indicates 

bias/precision less than 10%, yellow indicates bias/precision less than 20%, light blue indicates bias/precision less than 30%, and dark 

blue indicates bias/precision greater than 30%.  

 

  

Data 

availability 

scenario 

Short Medium Longer 

Bias (MRE) 

Annual data 

and model 

Monthly data, 

annual model 

Monthly data, 

monthly model LB-SPR 

Annual data 

and model 

Monthly data, 

annual model LB-SPR 

Annual data 

and model 

Monthly data, 

annual model LB-SPR 

LC10 -0.022 0.468 -0.040 0.068 -0.086 0.072 -0.133 0.104 0.184 -0.112 

LC1 -0.045 0.484 0.034 0.195 -0.140 -0.104 -0.097 0.166 0.168 -0.113 

LBSPR10 -0.570 0.136 NA -0.005 0.006 0.090 0.002 0.062 0.117 0.010 

LBSPR1 -0.603 0.111 NA 0.021 -0.030 0.056 -0.003 0.059 0.114 -0.030 

Precision (MARE)          

LC10 0.028 0.468 0.102 0.140 0.246 0.272 0.260 0.498 0.442 0.429 

LC1 0.072 0.484 0.130 0.233 0.216 0.209 0.133 0.301 0.311 0.167 

LBSPR10 0.570 0.138 NA 0.050 0.066 0.094 0.048 0.078 0.117 0.050 

LBSPR1 0.603 0.154 NA 0.152 0.113 0.139 0.138 0.120 0.157 0.149 
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Table 8. Summary table of key questions and conclusions.  

 Objective Conclusion 

1. Is LIME unbiased:  

a. Across life-history types? Yes, if the assumption of instantaneous length 

sampling is met, and growth parameters are 

known with no error. Performance is best for 

life histories with longevity less than 20 years 

under this assumption. 

b. With population variability? Yes. It is recommended to use more than one 

year of length data for short- and medium-

lived life-history types, and include catch or 

an abundance index if longer-lived. 

c. With inclusion of catch and/or an 

abundance index? 

Yes, with more than one year of length data 

for short-lived species. May over-estimate 

SPR for medium and longer-lived species if 

the population is not in equilibrium. 

2. Is LIME sensitive to:  

a. Sample size of length measurements? Yes, accuracy and precision generally 

improve with higher annual sample size. 

There is a performance plateau for 100 

samples for short-lived fish and 500 samples 

for medium- or longer-lived fish.  

b. Error in input parameters? Relatively insensitive to error in the CV of 

the age-length curve. If asymptotic length, 

von Bertalanffy growth coefficient, or length 

at 50% maturity are input lower than the 

truth, or natural mortality input higher than 

the truth, SPR will be estimated higher than 

the truth (and vice versa). 

3. Comparison of LIME and LB-SPR under equilibrium conditions 

a. Instantaneous annual sampling from 

age-structured model 

LIME unbiased across life-history types; LB-

SPR estimates lower SPR for short-lived life 

history. 

b. Continuous sampling (monthly) from 

age-structured model 

LIME should use monthly time steps for 

short-lived species, but can use annual time 

steps for medium and longer-lived species.  

c. Length-structured operating model 
 

LIME over-estimates SPR for short-lived and 

under-estimates SPR for medium- and longer-

lived. LB-SPR unbiased across life-history 

types. 
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Figure 1. Diagram of the simulation study. “LC” stands for length data, numbers indicate number 

of years in the 20-year time-period modeled. In the case of the instantaneous, annual length 

measurement scenario, we compared multiple sample sizes of length measurements annually 

(1,000, 500, 200, 100, 50, and 20). For the other scenarios, we assumed the base case of 200 

length measurements annually. 
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Figure 2. Selectivity, maturity, and length at age curves for the three life-history types tested in 

the simulation study, mimicking: (a) rabbitfish (Siganus sutor), a short-lived fish (L∞=36.2 cm, 

k=0.87, M=1.49, ����=1 year, maximum age A=4 years, Hicks and McClanahan 2012), (b) 

spotted rose snapper (Lutjanus guttatus), a medium-lived fish (asymptotic length L∞=64.6 cm, 

von Bertalanffy k=0.21, natural mortality M=0.43, length at 50% maturity ����=4 years, 

maximum age A=15 years; Bystrom 2015), and (c) red grouper (Epinephelus morio), a longer-

lived fish (L∞=90 cm, k=0.13, M=0.18, ����=7 years, maximum age A=26 years; Heemstra and 

Randall 1993). 
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Figure 3. Scenarios of fishing mortality and recruitment under equilibrium and variable 

conditions for the three life-history types, with corresponding trajectories of relative spawning 

biomass. Shaded regions represent the area between the 5
th

 and 95
th

 percentile of generated data, 

and the lines show three randomly chosen iterations out of 100, as examples. Scenarios labeled 

“equilibrium” demonstrate that the initial depletion may start between 0.05 and 0.95, but fishing 

mortality remains constant to produce that level of depletion, and recruitment is constant at 1.0 

over time. Scenarios labeled “two-way” demonstrate fishing mortality that increases to a fishing 

mortality rate F20% that results in 20% SPR over the first seven years, stays at F20% for seven 

years, and then drops to half of F20% for the last six years. Scenarios labeled “one-way” 

demonstrate a change from equilibrium fishing mortality resulting in an initial depletion between 

0.05 to 0.95 to the fishing mortality F20% over the 20-year period.  
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Figure 4. Distribution of relative error ((estimated-true)/true) for spawning potential ratio (SPR) in the current year for 100 iterations 

of simulated populations across the LIME and LB-SPR data availability scenarios for the three life-history types and scenarios of 

equilibrium and variable fishing mortality and recruitment with 200 samples of length measurements annually. The gray bean 

represents the “data-rich” scenario, which verifies LIME is unbiased and most precise when an unrealistically high amount of data are 

available. Darker colors represent data availability scenarios with 10 years of length data, and lighter colors represent the scenario 

with one year of length data available. Each life-history type has a different y-range.  
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Figure 5. Proportion of iterations out of 100 where the true value of the spawning potential ratio 

(SPR) lies within the 50% confidence intervals for each life-history type across various patterns 

of fishing mortality and recruitment (gray circles) compared to the convergence rates for the 

same scenario (pink triangles). 
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Figure 6. Comparison of the distribution of estimation error for spawning potential ratio (SPR) in 

the terminal year with the life history parameters fixed at +/- 25% of their true value from 100 

iterations of generated data across the various life history scenarios for the equilibrium (blue) and 

the two-way fishing mortality scenario with variable and autocorrelated recruitment (red), with 

other biological parameters fixed at their true values, including 10 years of length data with 200 

length measurements annually. Life history parameters include natural mortality, asymptotic 

length, von Bertalanffy growth coefficient, length at 50% maturity, and the coefficient of 

variation for the age-length curve.  
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Figure 7. Comparison of the LIME and LB-SPR methods in the equilibrium state via the 

distribution of relative error (estimated-true)/true for spawning potential ratio (SPR) in the 

current year for 100 iterations of simulated populations from the LIME age-structured operating 

model using annual length composition collected instantaneously in the year (a-c), monthly 

length data collection pooled into annual length compositions (d-f), and the LB-SPR operating 

model based on relative ages. The methods are compared across life-history types. Darker colors 

represent data availability scenarios with 10 years of length data, and lighter colors represent the 

scenario with one year of length data available. Each scenario has a different y-range.  
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Figure 8. Example of model estimates (color lines) with 95% confidence intervals (shaded areas) 

and the true simulated population dynamics (black dotted line) for each of the data availability 

scenarios for one iteration of a simulated population with medium-lived life history, 200 length 

measurements annually in the length data, for the base variation scenario. 
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Appendix A. 

 
 

Figure A1. Size at age for the yearly (blue) vs. monthly (white-orange) time steps for the short-

lived life-history type. White lines (monthly) overlapping blue lines (yearly) demonstrate that 

size-at-age is identical at the start to each year, and orange lines increasing in density indicate the 

size-at-age distributions during the following months within each year.  
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